
BCA SEM-3

Programming using Java
(05BC3306)

Unit – 2
Inheritance and packages

Inheritance in Java
 Inheritance in java is a mechanism in which one object

acquires all the properties and behaviours of parent

object.

 The idea behind inheritance in java is that you can create

new classes that are built upon existing classes. When you

inherit from an existing class, you can reuse methods and

fields of parent class, and you can add new methods and

fields also.

 Inheritance represents the IS-A relationship, also known

as parent-child relationship.

Why we use inheritance in java ?

 For Method Overriding (so runtime polymorphism can

be achieved).

 For Code Reusability.

Syntax of Java Inheritance

class Subclass-name extends Superclass-name

{

//methods and fields

}

 The extends keyword indicates that you are making a

new class that derives from an existing class.

 In the terminology of Java, a class that is inherited is

called a super class. The new clas4s is called a subclass.

Understanding the simple example of inheritance

As displayed in the figure,

Programmer is the subclass

and Employee is the

superclass.

Relationship between two

classes is Programmer IS-

A Employee.

It means that Programmer

is a type of Employee.
5

Types of inheritance in java

 On the basis of class, there can be three types of inheritance in
java:

 single, multilevel and hierarchical.

 In java programming, multiple and hybrid inheritance is supported
through interface only.

Types of inheritance in java

Types of inheritance in java

Note: Multiple inheritance is not supported in java through class.
When a class extends multiple classes i.e. known as multiple
inheritance.

Q) Why multiple inheritance is not supported in java?

To reduce the complexity and simplify the language, multiple
inheritance is not supported in java.

Consider a scenario where A, B and C are three classes. The C class
inherits A and B classes. If A and B classes have same method and
you call it from child class object, there will be ambiguity to call
method of A or B class.

Since compile time errors are better than runtime errors, java renders
compile time error if you inherit 2 classes. So whether you have same
method or different, there will be compile time error now.

Try this to implement multiple inheritance and see the result

class A{
void msg(){System.out.println("Hello");}
}
class B{
void msg(){System.out.println("Welcome");}
}
class C extends A,B{//suppose if it were
Public Static void main(String args[]){
C obj=new C();
obj.msg();//Now which msg() method would be invoked?

}
}

Result - Compile Time Error

(1) Single inheritance

In Single Inheritance there is only one Super Class and Only one Sub
Class Means they have one to one Communication between them.

(1) Single inheritance

class Room
{

int l,w;
Room(int l,int w)
{

this.l=l;
this.w=w;

}
int area()
{

return (l*w);
}

}
class BedRoom extends Room
{

int h;
BedRoom(int x,int y,int z)
{

super(x,y);
h=z;

}
int volume()
{

return(area()*h);
}

}

(1) Single inheritance

class ex11
{

public static void main(String args[])
{

BedRoom r1=new BedRoom(14,12,10);
int a1=r1.area();
int v1=r1.volume();
System.out.println("Area= " +a1);
System.out.println("Volume = "+v1);

}
}

(2) Multilevel inheritance

In Multilevel inheritance there is a concept of grand parent class.

If we take the example of above diagram then class C inherits class B
and class B inherits class A which means B is a parent class of C and A
is a parent class of B. So in this case class C is implicitly inheriting the
properties and method of class A along with B that’s what is called
multilevel inheritance.

(2) Multilevel inheritance

class stud
{

int r;
String n;

void getData(int r,String n)
{

this.r=r;
this.n=n;

}

void putData()
{

System.out.println("Roll Number : "+r);
System.out.println("Name is : "+n);

}
}

(2) Multilevel inheritance

class marks extends stud
{

int m1,m2,m3;

void getMarks(int s1,int s2,int s3)
{

m1=s1;
m2=s2;
m3=s3;

}
void putMarks()
{

System.out.println("Marks 1 : "+m1);
System.out.println("Marks 2 : "+m2);
System.out.println("Marks 3 : "+m3);

}
}

(2) Multilevel inheritance

class total extends marks
{

int tot=0;
void cal()
{

tot=m1+m2+m3;
}
void putTot()
{

putData();
putMarks();
System.out.println("Total is :"+tot);

}
}

(2) Multilevel inheritance

class MultilevelEx
{

public static void main(String args[])
{

total t=new total();
t.getData(1,"Abc");
t.getMarks(50,50,50);
t.cal();

t.putTot();
}

}

(3) Hierarchical inheritance

Hierarchical Inheritance is that in which a Base Class has Many Sub Classes or
When a Base Class is used or inherited by many Sub Classes.

(3) Hierarchical inheritance

class One
{

int x=10,y=20;
void display()
{

System.out.println("Value of X : "+x);
System.out.println("Value of Y : "+y);

}
}

class Two extends One
{

void addNum()
{

int z=x+y;
System.out.println("Addition is : "+z);

}
}

(3) Hierarchical inheritance
class Three extends One
{

void mulNum()
{

int z=x*y;
System.out.println("Multiplication is : "+z);

}
}

class HierarchicalEx
{

public static void main(String args[])
{

Two t2=new Two();
Three t3=new Three();
t2.display();
t2.addNum();
t3.mulNum();

}
}

Method Overloading in Java

If a class has multiple methods by same name but different
parameters, it is known as Method Overloading. If we have to
perform only one operation, having same name of the methods
increases the readability of the program.

Suppose you have to perform addition of the given numbers but
there can be any number of arguments, if you write the method such
as a(int,int) for two parameters, and b(int,int,int) for three
parameters then it may be difficult for you as well as other
programmers to understand the behavior of the method because its
name differs. So, we perform method overloading to figure out the
program quickly.

Method Overloading in Java

Advantage of method overloading?
Method overloading increases the readability of the program.
Different ways to overload the method

There are two ways to overload the method in java
1. By changing number of arguments
2. By changing the data type

In java, Method Overloading is not possible by changing the return
type of the method.

Method Overloading in Java

1) Example of Method Overloading by changing the no. of
arguments
In this example, we have created two overloaded methods, first sum
method performs addition of two numbers and second sum method
performs addition of three numbers.

Method Overloading in Java
class Calculation
{
void sum(int a,int b) { System.out.println(a+b); }
void sum(int a,int b,int c) { System.out.println(a+b+c); }

public static void main(String args[]){
Calculation obj=new Calculation();
obj.sum(10,10,10);
obj.sum(20,20);
}
}
Output: 30
40

Method Overloading in Java

2) Example of Method Overloading by changing data type of
argument
In this example, we have created two overloaded methods that
differs in data type. The first sum method receives two integer
arguments and second sum method receives two double
arguments.

Method Overloading in Java

class Calculation2
{
void sum(int a,int b){System.out.println(a+b);}
void sum(double a,double b){System.out.println(a+b);}
public static void main(String args[]){
Calculation2 obj=new Calculation2(); obj.sum(10.5,10.5);
obj.sum(20,20);
}
}
Test it Now Output: 21.0
40

Method Overriding in Java

 If subclass (child class) has the same method as declared
in the parent class, it is known as method overriding in
java.

 In other words, If subclass provides the specific
implementation of the method that has been provided
by one of its parent class, it is known as method
overriding.

Use of Method Overriding in Java

Method overriding is used to provide specific
implementation of a method that is already provided by
its super class.

Method overriding is used for runtime polymorphism

Rules for Java Method Overriding

method must have same name as in the parent class

method must have same parameter as in
the parent class.

must be IS-A relationship (inheritance).

Example of Method Overriding
class abc
{

int x;
abc(int x)
{
this.x=x;
}
void display()
{

System.out.println("Output From Base Class x = "+x);
}

}

Example of Method Overriding
class xyz extends abc
{

int y;
xyz(int x,int y)
{
super(x);
this.y=y;
}
void display()
{
System.out.println("Output From Derived Class x = "+x+" y = "+y);
super.display();
}

}
class ex12
{

public static void main(String args[])
{
xyz p1=new xyz(100,200);
p1.display();

}
}

FAQ of Method Overriding

(1) Can we override static method ?

Ans: No, static method cannot be overridden.It can be proved by runtime
polymorphism.

(2) Why we cannot override static method?

Ans: because static method is bound with class whereas instance method is
bound with object. Static belongs to class area and instance belongs to
heap area.

(3) Can we override java main method?

Ans: No, because main is a static method

Method Overloading Vs. Method Overriding

Constructor Overloading in Java

Constructor overloading is a technique in Java in which a class can have any
number of constructors that differ in parameter lists. The compiler differentiates
these constructors by taking into account the number of parameters in the list and
their type.

Example of Constructor Overloading
class Student5
{

int id;
String name;
int age;
Student5(int i,String n)
{

id = i;
name = n;

}

Constructor Overloading in Java
Student5(int i,String n,int a)
{

id = i;
name = n;
age=a;

}
void display(){System.out.println(id+" "+name+" "+age);}
public static void main(String args[])
{

Student5 s1 = new Student5(111,"Karan");
Student5 s2 = new Student5(222,"Aryan",25);
s1.display();
s2.display();

}
}
Output:
111 Karan 0
222 Aryan 25

Command Line Arguments

 Sometimes we need to pass some values while running the
program. Here our program will work according to the values
given by us at the time of executing the program. 18

 The java command-line argument is an argument i.e. passed at the
time of running the java program.

 The arguments passed from the console can be received in the
java program and it can be used as an input.

Command Line Arguments

class CommandLineEx
{

public static void main(String args[])

{
int count,i=0;
String s;

count=args.length;
System.out.println("Number Of Arguments = "+count);
while(i<count)

{
s=args[i];
i=i+1;

System.out.println(i+" Java Is "+s);
}
}

}

this keyword in java

There can be a lot of usage of java this keyword. In

java, this is a reference variable that refers to the

current object.

Usage of java this keyword

Here is given the 6 usage of java this keyword.

 this keyword can be used to refer current class instance variable.
 this() can be used to invoke current class constructor.
 this keyword can be used to invoke current class

method (implicitly)
 this can be passed as an argument in the method call.
 this can be passed as argument in the constructor call.
 this keyword can also be used to return the current

class instance.
 If there is ambiguity between the instance variable and parameter,

this keyword resolves the problem of ambiguity.

Understanding the problem without this keyword

Let's understand the problem if we don't use this keyword by the example given below:

class Student10

{

int id;

String name;

Student10(int id,String name)

{

id = id;

name = name;

}

void display()

{System.out.println(id+" "+name);}

public static void main(String args[])

{

Student10 s1 = new Student10(111,"Karan");

Student10 s2 = new Student10(321,"Aryan");

s1.display();

s2.display();

}

}

Test it Now

Output:

0 null

0 null

In the above

example,

parameter (formal

arguments) and

instance variables

are same that is

why we are using

this keyword to

distinguish

between local

variable and

instance variable.

Solution of the above problem by this keyword
//example of this keyword

class Student11

{

int id;

String name;

Student11(int id,String name)

{

this.id = id;

this.name = name;

}

void display(){System.out.println(id+" "+name);}

public static void main(String args[])

{

Student11 s1 = new Student11(121,“Rahul");

Student11 s2 = new Student11(122,“Hardik");

s1.display();

s2.display();

}

}

Final Keyword In Java

The final keyword in java is used to restrict the user. The java final keyword can
be used in many context. Final can be:

 variable

 method

 class

The final keyword can be applied with the variables, a final
variable that have no value it is called blank final variable or uninitialized final
variable. It can be initialized in the constructor only.

The blank final variable can be static also which will be initialized
in the static block only.

1) Java final variable

If you make any variable as final, you cannot change the value of final variable(It will be
constant).

Example of final variable

There is a final variable speedlimit, we are going to change the value of this variable, but
It can't be changed because final variable once assigned a value can never be changed.

class Bike9

{

final int speedlimit=90;//final variable

void run()

{

speedlimit=400;

}

public static void main(String args[])

{

Bike9 obj=new Bike9();

obj.run();

}

}//end of class

Result
Output: Compile Time Error

2) final method

If we wish to prevent the subclass from overriding the members of the super class then
we can use final keyword.

class abc

{

int x;

abc(int x)

{

this.x=x;

}

final void display()

{

System.out.println("Output From Base Class x = "+x);

}

}

2) final method
class xyz extends abc

{

int y;

xyz(int x,int y)

{

super(x);

this.y=y;

}

void display()

{

System.out.println("Output From Derived Class x = "+x+" y = "+y);

super.display();

}

}

class ex12

{

public static void main(String args[])

{

xyz p1=new xyz(100,200);

p1.display();

}

}

Now display method cannot be override compiler will throw error.

Questions

Q) Is final method inherited?

Ans) Yes, final method is inherited but you cannot override it.3

Q) What is blank or uninitialized final variable?

A final variable that is not initialized at the time of declaration is known as blank final
variable.

If you want to create a variable that is initialized at the time of creating object and once
initialized may not be changed, it is useful. For example PAN CARD number of an
employee. It can be initialized only in constructor.

Example of blank final variable

class Student {

int id;

String name;

final String PAN_CARD_NUMBER;

...

}

Questions

Que) Can we initialize blank final variable? Yes, but only in constructor. For example:

class Bike10

{

final int speedlimit;//blank final variable

Bike10()

{

speedlimit=70;

System.out.println(speedlimit);

}

public static void main(String args[])

{

new Bike10();

}

}

3) final class

Sometimes we need to prevent our class to be extended. For this purpose we
have to declare the class with final keyword.
e.g. final class abc

Here in above example when we declare class abc as final it will never be
extended to any subclass.(Consider example of method overriding)

abstract class

Abstraction is a process of hiding the implementation details and
showing only functionality to the user.

When we define any class with final keyword we know that it will be
never extended. Here the word abstract is totally opposite to this.
When we define any class with keyword abstract at that time we
need to extend this class.

An abstract class is a class that is like all normal classes .

abstract class

Only has two differences.

One, an application can not create an instance of this class. Only
instance of its non-abstract sub class can be created.

Two , an abstract class can have abstract methods, which are not
allowed in a non-abstract class.

Non abstract class can not have any abstract methods.

A class may be declared to be abstract even if the class has no
abstract methods declared and there are no abstract methods that
have been inherited. This may be done to prevent creating instances
of the class and it enforces the creation of sub-classes.

abstract class
abstract class Bike
{

abstract void runBike();
}

class Honda extends Bike
{

void runBike()
{

System.out.println("running safely..");
}

}
class ex144
{

public static void main(String args[])
{

Honda obj = new Honda();
obj.runBike();

}
}

abstract methods

When we define any method with final keyword we know that it will
never be overridden. Here the word abstract will work totally
opposite to this. When we define any method with the word
abstract then it must be implement it’s body in subclass.

A method that is declared as abstract and does not have
implementation is known as abstract method.

Abstract method does not have body part.

Interface

Since beginning we know that java does not support multiple
Inheritance. Because we can’t write like

class A extends B extends C
On the other hand we also know that multiple inheritance is

also 100% useful tool. So java provided us a new approach known as
interfaces.

Remember that : java class cannot be a subclass of more
than one Super class but it can implement more than one interface.

Interface

An interface in java is a blueprint of a class. It has static constants
and abstract methods only.

The interface in java is a mechanism to achieve fully abstraction.

There can be only abstract methods in the java interface not method
body. It is used to achieve fully abstraction and multiple inheritance
in Java.

Defining Interface

In general words we can say interface is basically a kind of
class. Like classes in interfaces it also contains methods, variables
etc. but with some difference. The main difference is in interface we
can define only abstract methods and final fields.
Syntax :
interface <interface name>
{

variable declaration;
methods declaration;

}

Defining Interface

Example
interface Item
{

static final int code=1001;
static final String name=“Fan”;
void display();

}

Extending Interface

Just like simple class we can extend one interface to another also. The
new interface will inherit all the members of the super interface in the same
manner like subclass syntax :
interface i2 extends i1
{

body of i2;
}
Example :
interface ItemConstants
{

static final int code=1001;
static final String name=“Fan”;

}
interface Item extends ItemConstants
{

void display();
}

Implementing Interface

Interfaces are used as a super class which we can inherit in our class
which is must.
syntax :
class <clasname> implements <interfacename>
{

body of class
}
Remember that : We can implement more then one interface into one class by
implementing more then one interface separated by comma.

class <classname> extends <superclass>
implements <interface1>,<interface2>….

{
body of the class

}

Implementing Interface

interface area
{

final static float pi=3.14f;
float compute(float x,float y);

}
class rectangle implements area
{

public float compute(float x,float y)
{

return(x*y);
}

}
class circle implements area
{

public float compute(float x,float y)
{

return(pi*x*x);
}

}

Implementing Interface

class InterfaceEx
{

public static void main(String args[])
{

rectangle r1=new rectangle();
circle c1=new circle();
System.out.println("Area Of Rectangle = "+r1.compute(10.0f,20.0f));
System.out.println("Area Of Circle = "+c1.compute(10.0f,0.0f));

}
}

Implementing Hybrid inheritance

Interface can be used to declare a set of constants that can be used in different
classes.

we can use one class to be extended and more than one interfaces to be
implemented.

Example
class Student
{

int rno;
void getNumber(int n)
{

rno=n;
}
void putNumber()
{

System.out.println("Roll No. : ="+rno);
}

}

Implementing Hybrid inheritance
class Test extends Student
{

float p1,p2;
void getMarks(float m1,float m2)
{

p1=m1;
p2=m2;

}
void putMarks()
{

System.out.println("Marks obtained");
System.out.println("Part1=" + p1);
System.out.println("Part2=" + p2);

}
}
interface sports
{

final static float sw=6.0f;
void putsport();

}

Implementing Hybrid inheritance
class result extends Test implements sports
{

float total;
public void putsport()
{

System.out.println("Sports Score " +sw);
}
void display()
{

total=p1+p2+sw;
putNumber();
putMarks();
putsport();
System.out.println("Total Score = "+total);

}
}

Implementing Hybrid inheritance
class HybridEx
{

public static void main(String args[])
{

result s1 = new result();
s1.getNumber(1234);
s1.getMarks(27.5f,33.0f);
s1.display();

}
}

Interface and Class

An interface is similar to a class in the following ways:

An interface can contain any number of methods.

An interface is written in a file with a .java extension.

The bytecode of an interface appears in a .class file.

However, an interface is different from a class in several ways, including:
You cannot instantiate an interface.

An interface does not contain any constructors.

All of the methods in an interface are abstract.

An interface cannot contain instance fields. The only fields that can appear in an
interface must be declared both static and final.

Difference between abstract class and interface
Abstract class Interface

1) Abstract class can have abstract and
non-abstract methods.

Interface can have only abstract methods.

2) Abstract class doesn't support multiple
inheritance.

Interface supports multiple inheritance.

3) Abstract class can have final, non-final,
static and non-static variables.

Interface has only static and final
variables.

4) Abstract class can have static methods,
main method and constructor.

Interface can't have static methods, main
method or constructor.

5) Abstract class can provide the
implementation of interface.

Interface can't provide the
implementation of abstract class.

6) The abstract keyword is used to declare
abstract class.

The interface keyword is used to declare
interface.

7) Example:
public abstract class Shape{
public abstract void draw();
}

Example:
public interface Drawable{
void draw();
}

super keyword

The super is a reference variable that is used to refer immediate parent class
object.

Whenever you create the instance of subclass, an instance of parent class is
created implicitly i.e. referred by super reference variable.

Usage of super Keyword

• super is used to refer immediate parent class instance variable.
• super() is used to invoke immediate parent class constructor.
• super is used to invoke immediate parent class method.

super keyword with variable
• super is used to refer immediate parent class instance variable. By using super.instance

variable name of parent class.

class Vehicle
{
int speed=50;

}
class ex148 extends Vehicle
{
int speed=100;
void display()
{
System.out.println(super.speed);//will print speed of Vehicle

}
public static void main(String args[])
{
ex148 b=new ex148();
b.display();

}
}

super keyword with constructor

super() is used to invoke immediate parent class constructor.

You can invoke parent class default constructor using super() and
parameteized constructor using super(Parameter List)

When we create Object of Sub class Default constructor of parent
class is called automatically.

super keyword with constructor
class Vehicle
{

Vehicle(int speed)
{

System.out.println("Vehicle is created "+speed);
}

}

class ex150 extends Vehicle
{

ex150()
{

super(5);//will invoke parent class constructor
System.out.println("Bike is created");

}
public static void main(String args[])
{
ex150 b=new ex150();

}
}

super keyword with method

super is used to invoke immediate parent class method.

You can call method of parent class by using super.methodName.

class Person
{

void message()
{

System.out.println("welcome");
}

}

super keyword with method
class ex151 extends Person
{

void message()
{

System.out.println("welcome to java");
}

void display()
{

message();//will invoke current class message() method
super.message();//will invoke parent class message() method

}

public static void main(String args[])
{

ex151 s=new ex151();
s.display();

}
}

Java Package

 A java package is a group of similar types of classes,
interfaces and sub-packages.

 Package in java can be categorized in two form, built-in
package and user-defined package.

 There are many built-in packages such as java, lang, awt, javax, swing, net, io,
util, sql etc.

Advantage of Java Package

1) Java package is used to categorize the classes and interfaces so that they can be
easily maintained.

2) Java package provides access protection.

3) Java package removes naming collision.

Simple example of java package

The package keyword is used to create a package in java.

//save as Simple.java

package mypack;

public class Simple{

public static void main(String args[])

{

System.out.println("Welcome to package");

}

}

How to compile java package

If you are not using any IDE, you need to follow the syntax given below:

javac -d directory javafilename

For example

javac -d . Simple.java

The -d switch specifies the destination where to put the generated class file. You
can use any directory name like /home (in case of Linux),

d:/abc (in case of windows) etc. If you want to keep the
package within the same directory, you can use . (dot).

How to run java package program

You need to use fully qualified name

e.g. mypack.Simple etc to run the class.

To Compile: javac -d . Simple.java

To Run: java mypack.Simple

Output: Welcome to package

The -d is a switch that tells the compiler where to put the class file i.e. it represents

destination. The . represents the current folder.

How to access package from another package?

There are three ways to access the package from outside the package

1. import package.*;

2. import package.classname;

3. fully qualified name.

Note: If you import a package, sub-packages will not be imported.

Note: Sequence of the program must be package then import
then class.

Package Example

package mypack;
public class MyPackage
{

public void getCityName()
{

System.out.println(“City is : Rajkot”);
}

}

Package Example

1)Using packagename.*

import mypack.*;
class MainEx
{

public static void main(String args[])
{

MyPackage a=new MyPackage();
a.getCityName();

}
}

Package Example

2)Using packagename.classname

import mypack.MyPackage;
class MainEx
{

public static void main(String args[])
{

MyPackage a=new MyPackage();
a.getCityName();

}
}

Package Example

3) Using fully qualified name

class MainEx
{

public static void main(String args[])
{

mypack.MyPackage a=new mypack.MyPackage();
a.getCityName();

}
}

Subpackage in java

 Package inside the package is called the subpackage. It should be
created to categorize the package further.

 Let's take an example, Sun Microsystem has definded a package
named java that contains many classes like System, String, Reader,
Writer, Socket etc. These classes represent a particular group e.g.
Reader and Writer classes are for Input/Output operation, Socket
and ServerSocket classes are for networking etc and so on. So,
Sun has subcategorized the java package into subpackages such
as lang, net, io etc. and put the Input/Output related classes in io
package, Server an56d ServerSocket classes in net packages and so
on.

Subpackage in java

Example of Subpackage

package com.javatpoint.core;

class Simple
{

public static void main(String args[])
{

System.out.println("Hello subpackage");
}

}

To Compile: javac -d . Simple.java
To Run: java com.javatpoint.core.Simple
Output:Hello subpackage

Access Modifiers

Class Modifiers

Keyword Detail

abstract Must be extended

final Cannot be extended

public can be accessed by any other class but if the

keyword is missing then access is limited to the

current package

Access Modifiers

Method Modifiers
Keyword Detail

abstract Must be overridden

final Must not be overridden

native Implemented in machine code used by the host cpu

not by the Java ByteCode

private Can be invoked only by the same class

protected Can be invoked only by code of subclass of same

package

public Can be invoked by any other class

static Not an instance variable

synchronized acquires a lock when begins execution
54

Access Modifiers

Variable Modifiers

Keyword Detail

final It is a constant

private Can be accessed only by the same class only

protected Can be accessed only by the class in which it is

declared and sub classes of the same package

public Can be accessed by any other class

static is not an instance variable
55

Static Import

The static import feature of Java 5 facilitate the java
programmer to access any static member of a class
directly. There is no need to qualify it by the class name.

Advantage of static import:
Less coding is required if you have access any static
member of a class oftenly.

Disadvantage of static import:
If you overuse the static import feature, it makes the
program unreadable and unmaintainable.

Simple Example of static import

import static java.lang.System.*;
class StaticImportExample
{

public static void main(String args[])
{

out.println("Hello"); //Now no need of System.out
out.println("Java");

}
}

What is the difference between import and static import?

The import allows the java programmer to access classes of a
package without package qualification whereas the static import
feature allows to access the static members of a class without the
class qualification. The import provides accessibility to classes and
interface whereas static import provides accessibility to static
members of the class.

Java API Packages

Java

lang

util

io

awt

net

applet

Java API Packages
Package Name Description

java.lang Language Support Classes. This package imported itself and
includes classes for String, Maths, Threads and Exceptions

java.util Language utility classes such as vectors, hash tables random
numbers, date etc.

java.awt Set of classes for implementing GUI

java.io Input output classes – Provides facility for data input and output

java.net Classes for networking.

java.applet Classes for creating and implementing applets.

Java String

Java String provides a lot of concepts that can be performed on a
string such as compare, concat, equals, split, length, replace,
compareTo, substring etc.

In java, string is basically an object that represents sequence of char
values.

An array of characters works same as java string. For example:

char[] ch={'j','a','v','a',‘p',‘r','o',‘g',‘r',‘a‘,’m’};

String s=new String(ch);

is same as:

String s=“javaprogram";

Java String
Remember that Strings in java is immutable

object means that once created, a string cannot be
changed: none of its methods changes the string.
Such objects are called immutable.

Immutable objects are convenient because
several references can point to the same object
safely: there is no danger of changing an object
through one reference without the others being
aware of the change.

Advantage of using Strings
more efficient, no need to copy.

s1

s2

s1

s2

OK Less efficient:
wastes memory

"Sun"

"Sun"

"Sun"

Disadvantage of using Strings
Less efficient — you need to create a new

string and throw away the old one for every small
change.

String s = "sun";

char ch = Character.toUpperCase(s.charAt (0));

s = ch + s.substring (1);

s "sun"

"Sun"

Java String

The java.lang.String class implements

Serializable, Comparable and CharSequence interfaces.

The java String is immutable i.e. it cannot be changed but a new
instance is created. For mutable class, you can use StringBuffer and
StringBuilder class.

What is String in java ?

Generally, string is a sequence of characters. But in java, string is an
object that represents a sequence of characters. String class is
used to create string object.

How to create String object?

There are two ways to create String object:By

1. string literal

2. By new keyword

(1) Java String literal is created by using double quotes.

For Example: String s="welcome";

Each time you create a string literal, the JVM checks the string
constant pool first. If the string already exists in the pool, a reference
to the pooled instance is returned. If string doesn't exist in the pool,
a new string instance is created and placed in the pool.

For example:
String s1="Welcome";
String s2="Welcome";//will not create new instance

(1) Java String literal is created by using double quotes.

Note: String objects are stored in
a special memory area known as
string constant pool.

In the above example only one object will be created. Firstly JVM will not find any string
object with the value "Welcome" in string constant pool, so it will create a new86 object.
After that it will find the string with the value "Welcome" in the pool, it will not create
new object but will return the reference to the same instance

(1) Java String literal is created by using double quotes.

Q. Why java uses concept of stringliteral?

Ans. To make Java more memory efficient (because no new objects
are created if it exists already in string constantpool).

(2) By new keyword

 String s=new String("Welcome");

 In such case, JVM will create a new string object in normal
(non pool) heap memory and the literal "Welcome" will be placed
in the string constant pool. The variable s will refer to the object in
heap(non pool).

Various methods of String Class
Method Usage Example

length() Returns the no. of
characters in the String

String str=“Computer”
str.length();
Will return 8.

charAt(n) Returns the nth character
from given string.
(Remember that counts
from zero)

String str=“Computer”
str.charAt(3);
Will return p.

substring() We can use this method in
two ways. (1) by passing two
values starting and ending
(2) by passing only starting
value so that it goes upto
end.

String str=“Computer”
str.substring(3,5);
Will return pu.
String str=“Computer”
str.substring(3);
Will return puter

concat() Concates two strings and
stores the result in new
string

String s1 = “abc”
String s2 = “xyz”
String s3=s1.concat(s2)
Result of s3 is “abcxyz”

Various methods of String Class
Method Usage Example

indexOf() Returns the position of the
character from beginning or
from the given position

String date ="July 5, 2012 1:28:19 PM";

date.indexOf ('J'); 0

date.indexOf ('2'); 8

date.indexOf ("2012"); 8

date.indexOf ('2', 9); 11

date.indexOf ("2020"); -1

date.lastIndexOf ('2'); 15

Returns:

(not found)

(starts searching

at position 9)

0 8 11 15

Various methods of String Class
Method Usage Example

equals() Returns true if both the
strings are equal.

boolean b = s1.equals(s2);

equalsIgnoreCase() Returns true if both strings
are equal (without case
sensitivity)

compareTo Returns the difference
between two strings.

compareToIgnoreCase() Returns the difference
between two strings
(ignoring case)

trim() Removes white spaces from
both the sides of the string
and return the new string.

replace() Replace the given character
from the given string with
another character.

String str="Replace Region";
System.out.println(str.replac
e('R','A'));
Output : Aeplace Aegion.

Various methods of String Class
Method Usage Example

toUpperCase() Converts given string into
uppercase letters

toLowerCase() Converts given string into
lowercase letters

Remember that we have to write like
s1 = s1.toUpperCase() then and then the string s1
will be converted to uppercase but if we just write
s1.toUpperCase() then it has no effect.

Numbers to Strings
Three ways to convert a number into a
string:

1.

String s = "" + num;

2.

String s = Integer.toString (i);

String s = Double.toString (d);

3.

String s = String.valueOf (num);

Integer and Double

are “wrapper” classes

from java.lang that

represent numbers as

objects. They also

provide useful static

methods.

Immutable String in Java

 In java, string objects are immutable. Immutable simply
means unmodifiable or unchangeable.

 Once string object is created its data or state can't be changed but
a new string object is created.

 Let's try to understand the immutability concept by the example
given in next slide:

Immutable String in Java

class Testimmutablestring
{

public static void main(String args[])
{
String s="Sachin";
s.concat(" Tendulkar");
//concat() method appends the string at the end
System.out.println(s);
//will print Sachin because strings are immutable objects
}

}

Immutable String in Java

 Now it can be understood by the diagram given below. Here Sachin is not
changed but a new object is created with sachintendulkar. That is why
string is known as immutable.

As you can see in the above figure that two objects are created but s reference
variable still refers to "Sachin" not to "Sachin Tendulkar".

Immutable String in Java

But if we explicitely assign it to the reference variable, it will
refer to "Sachin Tendulkar" object.

For example:
class Testimmutablestring1
{

public static void main(String args[])
{
String s="Sachin";
s=s.concat(" Tendulkar");
System.out.println(s);
}

}
Output: Sachin Tendulkar

Java StringBuffer class

Java StringBuffer class is used to created mutable (modifiable) string.
The StringBuffer class in java is same as String class except it is
mutable i.e. it can be changed.

Note: Java StringBuffer class is thread-safe i.e. multiple threads
cannot access it simultaneously. So it is safe and will result in an
order.

Important methods of StringBuffer class

public synchronized StringBuffer append(String s): is used to
append the specified string with this string.

public synchronized StringBuffer insert(int offset, String s): is used
to insert the specified string with this string at the specified
position.

public synchronized StringBuffer replace(int startIndex, int
endIndex, String str): is used to replace the string from specified98

startIndex and endIndex.

Important methods of StringBuffer class

public synchronized StringBuffer delete(int startIndex, int
endIndex): is used to delete the string from specified startIndex
and endIndex.

public synchronized StringBuffer reverse(): is used to reverse the
string.

public char charAt(int index): is used to return the character at
specified index.

Important methods of StringBuffer class

public int length(): is used to return the
length of the string i.e. total number of characters.

public String substring(int beginIndex): is used to return the
substring from the specified beginIndex.

public String substring(int beginIndex, int endIndex): is used to
return the substring from the specified beginIndex and endIndex.

Important methods of StringBuffer class

class ex15

{

public static void main(String args[])

{

StringBuffer str=new StringBuffer("Object Language");

System.out.println("Original String = "+str);

System.out.println("Length of the string = "+str.length());

for(int i=0;i<str.length();i++)

{

int p=i+1;

System.out.println("Character At Position "+p+" is "+str.charAt(i));

}

String str1=new String(str.toString());

int pos=str1.indexOf("Language");

str.insert(pos,"Oriented ");

System.out.println("Modified String = "+str);

str.setCharAt(6,'-');

System.out.println("New String = "+str);

str.append(" Improve Security");

System.out.println("Append String = "+str);

}

}

Java StringBuilder class

Java StringBuilder class is used to create mutable (modifiable) string.
The Java StringBuilder class is same as StringBuffer class except that it
is non- synchronized.
StringBuilder is basically identical to the older StringBuffer, but is
slightly faster because it isn't synchronized.
Constructors
sb = new StringBuilder()

Creates empty StringBuilder
sb = new StringBuffer(n)

Creates empty StringBuilder with initial capacity n.
sb = new StringBuffer(s)

Creates StringBuilder with value initialized to String s.

It is available since JDK 1.5.

Important methods of StringBuilder class

Method Description

public StringBuilder append(String s) is used to append the specified string
with this string.

public StringBuilder insert(int offset,
String s)

is used to insert the specified string with
this string at the specified position

public StringBuilder replace(int
startIndex, int endIndex, String str)

is used to replace the string from
specified startIndex and endIndex.

public StringBuilder delete(int
startIndex, int endIndex)

is used to delete the string from spe 102

Important methods of StringBuilder class
public StringBuilder reverse() is used to reverse the string.

public char charAt(int index) is used to return the character at
the specified position.

public int length() is used to return the length of the
string i.e. total number of
characters.

public String substring(int
beginIndex)

is used to return the substring from
the specified beginIndex.

public String substring(int
beginIndex, int endIndex)

is used to return the substring from
the specified be 10

Java StringBuilder class

public class TestString

{

public static void main(String[] args)

{

long startTime = System.currentTimeMillis();

StringBuffer sb = new StringBuffer("Java");

for (int i=0; i<100000; i++)

{

sb.append("Object Oriented");

}

System.out.println("Time taken by StringBuffer: " + (System.currentTimeMillis() - startTime) +
"ms");

startTime = System.currentTimeMillis();

StringBuilder sb2 = new StringBuilder("Java");

for (int i=0; i<100000; i++)

{

sb2.append("Object Oriented");

}

System.out.println("Time taken by StringBuilder: " + (System.currentTimeMillis() - startTime) +
"ms");

}

}

java.lang.Math Class

The java.lang.Math class contains methods for performing basic
numeric operations such as the elementary exponential, logarithm,
square root, and trigonometric functions. In short this class is used
to perform various mathematical operations.

Some functions from Math Package
Function Action

sin(x) returns sin of angle x

cos(x) returns cos of angle x

tan(x) returns tangent of angle x

asin(x) returns the angle whose sine is x

acos(x) returns the angle whose cosine is x

atan(x) returns the angle whose tangent is x

pow (x,y) returns the value of x raised to y

exp(x) returns the value of e raised to x

log(x) returns natural log of x

sqrt(x) returns square root of x

Some functions from Math Package
Function Action

ceil(x) returns the nearest whole number less then or
equal to x

floor(x) returns the nearest whole number greater then
or equal to x

round(x) returns the integer closest to the x

abs(a) returns absolute value of a

max(a,b) returns maximum out of a and b

min(a,b) returns minimum out of a and b

Thank You

